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1. Phys. A Math. Gen. 28 (1995) 1977-2004. printed in the UK 

The structure of WTC expansions and applications 

Satyanad Kichenassamy and Gopala Krishna Srinivasan 
University of Minnesota, 127 Vincent Hall, School of Mathematics, 206 C h w h  Street SE, 
Minneapolis, MN 55455-0487, USA 

Received 14 November 1994 

Abstract We consrmct generalized Painlevd expansions with loffarithmic terms for a 
general class of (‘non-integrable’) scalar equations, and describe their suuctue in detail. 
These expansions were intruduced withoul logarithms by Weiss-Thr€mevale (m). The 
construction of the formal solutions is shown to involve semi-invariants of binary forms, and 
tools from invariant theory are applied to the determination of the type of logarithmic terms that 
are required for the most general singular series. The struclure of the series depends strongly on 
whether 1 is or is not a resonance. The convergence of these series i s  obtained as a consequence 
of the general results of Littman and Kichenassamy. The results are illustrated an a family of 
fiffh-arder models for water-waves, and other examples. We also give necessary and suflicient 
conditions for -1 to be a resomce. 

1. Introduction 

1.1. Background 

In 1983, seeking a generalization of the Painlev6 (or Painlevi-Kowalewski) test for 
integrability by inverse scattering, Weiss, Tabor and Camevale (WC) [Zl] showed that 
Burgers’ equation, the Korteweg-de Vries equations and a few others possess formal 
solutions of~the form 

in which the number of arbitrary coefficients is equal to the order of the equation minus 
one, and U is negative. The values of j such that uj is arbitrary are called resonances, 
and they are the roots of a polynomial which can he computed from the equation. It 
was rapidly noticed that the consimction of this series is greatly simplified if one lets 
4 = t - $(x) (reduced ansatz, KmsM), which essentially means that one may take 4 as 
a new time variable.. The original formulation is sometimes more instructive, since one 
can in important cases derive a Backlund transformation and a Lax pair from it; q4 is then 
related to the eigenfunction of the associated eigenvalue problem. The existence of such 
expansions has been proved for a large number of  equations integrable by inverse scattering, 
suggesting that their existence is the basis of a test for integrability. Some equations do 
however have a commutator representation and admit solutions with more complicated 
movable singularities: the Harry Dym equation requires fractional powers of 4 (see [7] for 
a possible explanation), while the Chazy equation, a reduction of the self-dual Yang-Mills 
equations, has solutions with a movable natural boundary [l]. The status of the WTC test is 
described in the surveys [16,20,17,22,8]; extensive references are contained in [16,2,8]. 
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On the other hand, a large number of equations with polynomial nonlinearities have 
formal expansions of the form 

and the previous series corresponds to the vanishing of the coefficients of the logarithmic 
terms. It seems that the presence of logarithms implies that the solutions in question have 
singulatities which cluster in a self-similar fashion, and this is sometimes viewed as a 
possible symptom for non-integrable behaviour (see, for example, Levine and Tabor [17] 
and their references). It therefore becomes important to understand the structure of the series 
in more detail, since this seems to give some indication of the nature of ‘non-integrable 
behaviour.’ Truncations of such series sometimes give exact solutions in ‘non-integrable’ 
cases; see, for example, [18,19]. Also, the consideration of logarithmic series sheds some 
light on the mechanism of singularity formation in semi-linear evolution equations (see 1141). 
integrable or not, and provides new paradigms. 

In terms of the reduced ansatz, and taking q5 as a time variable, these more general 
series will be written 

tY uj,k(x)tj(lnt)k. 
j 2 k X  

They will be referred to in the rest of the paper as WTC expansions, and the reduced ansatz 
will always be used from now on. 

1.2. Issues and results 

(a) The convergence of wc expansions with or without logarithms was proved in a quite 
general setting in [14]; the assumption is that the first term of the expansion can be found, 
and the conclusion is that there is an integer 1 and at least one series 

t u  ujo, ....,, (x)t”[t l n t ~ j l .  . . [t(~nt)’]J (1) 
jo,...&D 

which converges for small It1 and solves the equation. A constructive procedure for 
estimating 1 and for computing the coefficients follows from the proof. The convergence 
follows from the existence of analytic solutions for a ‘generalized Fuchsian equation’. The 
procedure is recalled, with a slight improvement, and applied to the equations of this paper 
in section 4. The argument applies in any number of space dimensions, to equations as well 
as systems. Note that another method for proving convergence in the case of the Korteweg- 
de Vries equation was announced in [13]. It is based on a reduction to an iteration adapted 
to this equation. It seems that another reduction, adapted to Burgers’ equation, is possible. 
Several results for ODES have been known for some time (see especially [3], which deals 
specifically with the Painlev€ test). 

(b) The number 1 (‘number of logarithms’) in (1) was estimated rather crudely in 1141. 
For scalar equations of high order, it can be wide of the mark since it rests on the preliminary 
reduction to a large first-order system, convenient for the convergence proof. We give a 
more realistic estimate for single equations, which is optimal in several cases. Thus, 1 = 1 
suffices if all resonances are simple and 1 is not a resonance. We also briefly show that the 
logarithmic series can also sometimes be viewed as a series in f and t“‘ In t ,  where m can 
be estimated explicitly; here, the spacing of the resonances and the form of the nonlinear 
terms must be taken into account. Such a formulation comes up in connecting the presence 
of logarithms with the existence of self-similar clusters of singularities; see, for example, 
Levine and Tabor 1171. 
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(c) It is well known that -1 is often, but not always, a resonance. Its occurrence can be 
formally explained using the arbitrariness of the singularity surface. -I is not a resonance in 
the case of the Cauchy problem (WTC expansion with U = 0, and no logarithms). Clarkson 
and Cosgrove [6] give a number of enlightening examples, and suggest that -1 is not 
a resonance if, upon substitution of the series into the equation, only terms involving uo 
occur in the most singular terms, and if setting'their sum equal to zero produces a non-trivial 
equation for UO. We show that this is conect by giving a necessary and sufficient condition 
for - 1 to be a resonance (see section 2). 

(d) We apply these results in section 5 to a class of fifth-order model equations which 
occur in water wave models and several other applications (see Kichenassamy and Olver [15] 
for many references). Only two sets of parameter values (apart from the known integrable 
cases) had previously been investigated from the point of view of the WTc method: (i) Jeffrey 
and Xu [U] considered the case when U = -4, which is somewhat exceptional, most 
parameter values leading to U = -2. They found that pure power expansions do not exist 
in general, by computing the compatibility condition at level S. (ii) Conte et af [8] found 
one other case where four non-negative resonances occur. As we show, there a&, for 
general parameter values, 18 cases where there are four positive resonances for one choice 
of uo; for four of them only does the other choice of uo also lead to the maximum number 
of positive resonances (viz three) including the Sawada-Kotera, KaupKuperschmidt and 
fifth-order KdV equations. None of the other cases leads to series which are entirely free 
of logarithms. There are nine further~cases if we consider non-negative resonances. Values 
of I for these equations can however be determined for all, and the results are summarized 
in table 1. For some parameter values, the equation degenerates to third order, and can in 
some cases have series solutions .with two arbitrary coefficients. These degenerate cases are 
also interesting in their having a second WTC series with U = 1, which is not of Cauchy- 
Kowalewska type. This example is similar to those of Clarkson<osgrove. A few other 
peculiarities are also noted. 

(e) An important tool will be the analysis of the operator 

M = toa/ato + (tl + to)a/atl + . . . + (tf + ztr-l)a/atf 

acting on homogeneous polynomials in (to.. . . . ti). Remarkably enough, the equation 
Mu = 0 expresses that U is a semi-invariant (also known as a source of covariants) in the 
sense of tiie invariant theory of binary forms (see. [ll], the introduction to which contains 
many modem references). The necessary material on invariant theory is included in the 
appendix of the present paper. The use of properties of M streamlines the construction of 
the WC series. Note that the operator M also arises, in a somewhat different context, in 
the construction of normal forms near critical points with a nilpotent linear part [9,10]. 

1.3. Organization of the paper 

Section 2 contains a more technical description of the WTC algorithm (with logarithms) for 
scalar equations, and examines when -1 can be a resonance. It also contains some results 
which are used in section 3. 

Section 3 gives general results on the form of WTC expansions with logarithms, and 
shows how their convergence follows from the results of 1141, via a reduction to a Fuchsian 
system. This section also contains a reduction of general semi-linear systems to Fuchsian 
form, which complements the results of section 2. 

Section 4 shows gives better estimates for the 'number of logarithms', based on 
properties of the operator M. 
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Section 5 applies the previous results to specific examples, which also illustrate possible 

The appendix proves the properties of M that are needed in section 4, and outlines the 
pathologies. 

relation to invariant theory. 

2. The wc algorithm 

The WTC algorithm seeks singular solutions with power growth, for PDE with polynomial- 
type nonlinearities. The singularity is localized on a surface, near which the solutions 
behave like a power of the distance to the surface. The leading behaviour is determined in 
such a way that the top-order derivatives balance some of the nonlinear terms. 

For simplicity, we consider only scalar equations with polynomial dependence on the 
unknown and its derivatives; it is not difficult to extend our considerations to rational 
nonlinearities. The equation reads 

F [ U I  := q t ,  x , ,  . . . , x,, U ,  aru, a,,U, . . .) = 0. t2) 
After a change of variables, we assume that the singularity occurs at t = 0. Let m be 
the order of the equation, which will also be assumed to be the order of the highest, time 
derivative. This means that the singularity surface is non-characteristic. All considerations 
are local, near (x.  t )  = (0,O). 

The solution will be of the form U = uo(x)t”( l  +o(l)) as t tends to zero, with KO # 0. 
More precisely, the original wc test requires the existence of solutions of the form 

u ( x ,  t )  = x u j ( x ) t u + j  (3) 

U ( X .  t) = C u j ( x ) r u + J q  (4) 

rao 
while the weak Painlev6 test requires 

G O  

for some integer q;  one usually also requires U to be a fraction -p/q. with gcd(p, q )  = 1. 
On the other hand, ‘non-integrable’ cases usually lead to the more general expansion 

(5) 

We .will see that the latter is indeed the most general singular expansion in many cases. 
Equation (4) can of course be subsumed in principle under (3) by taking t’/9 as new time 
variable. For the same reason, we do not consider expansions (5) involving fractional 
powers of t .  Like most authors, we also exclude logarithms in the leading terms. 

2.1. Leading term 

Since f plays a special role, it is appropriate to distinguish space and time variables; we 
introduce some notation which reflects this concern. Let 8: = 8; ... a$ denote the most 
general space derivative; I = ( i l ,  . . . , in) is a multi-index. The most general nonlinear 
combination of U and its derivatives is 

U“ := n(a/a&p. (6) 

Here, a1 = (a1.1, . . . , am.l) is again a multi-index: note that pure time derivatives correspond 
to i l  = . . . = in = 0. We define 

u(x ,  t )  = uj,. ....jt (x)t”+h(t Inr)jl . . . ( t ( Int) ‘ ) jT.  

jo. .... ha0 

j.1 
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They will be called respectively the degree and weight of ay. We also let g(u) = E, g(a,) ,  
p ( u )  = E, p(u,), and )I\ = i l + . . . + i,. It is helpful to introduce a special notation for 
those monomials in F which do not contain space derivatives: 

uA = u A o ( ~ : ~ ) .  . . (ayu)Am. 
Since A = (Ao, . . . , A,) is itself a multi-index, one can as before define its degree and 
weight. They correspond to those monomials (6) for which I = (0, . . . , 0). 

We may now write the equation in the form 

where 

and fao # 0. To minimize technicalities, we will assume that F is polynomial in U and its 
derivatives, so that the sum in (8) is finite. It is however possible to allow more general 
nonlinearities. 

If U = uo(x)tY + h.o.t., where h.0.t. refers to higher-order terms in t ,  we have 

a/a& = U(U - I) . . . ( U  - j + i)(a;uo)tY-j + h.0.t. 

Therefore 

where 

2.2. General strategy 

We are now in a position to outline the line of attack. 
We are interested in consrmcting solutions of the form U = uot" + h.o.t., representing a 

balance of the top-order time derivatives and some nonlinear term. 
We will first determine v such that one may choose uo to satisfy the equation at lowest 

order. To simplify the equation for UO, we assume that the most singular terms one obtains 
upon substitution of (3) or (4)  into the equation never conrain m y  space derivatives, and 
that the top-order time derivatives enter only into the most singular terms. This enables us 
to write 

F [ u o ( x ) ~ "  + h.o.t.1 tP(P(uo)  + h.0.t.) 

where 
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P(uo) := f,o(x)c(v, A)ufA’.  (11) 
vg(A)-p(A)tp(A)=p 

Thanks to our assumption, since no spatial derivatives enter at leading order, the leading 
term is determined by an algebraic equation (P(u0) = 0), instead of a difeerential equation. 

Once uo has been chosen among the roots of P, instead of constructing directly a 
recurrence relation for the higher-order terms in the expansion of the putative solution, it 
will be more efficient to show that there is a new unknown w, related to U by a formula of 
the form 

t-”u = uo + hq(x)f(lnt)q + t w ( x ,  t )  (12) 
,a4 

which solves a Fuchsian equation 

where Q is a polynomial in its second argument, and the integer ko will be determined later. 
To this end, we will further require that the second most singular terms also do not involve 
space derivatives: this second assumption is not essential but simplifies the procedure; the 
most general statement will be given elsewhere. 

Such an equation is said to be Fuchsian because it reduces to an ODE with a regular 
singular point at f = 0, in the event that the G, do not depend on derivatives of w in the 
variables x .  

The inductive construction of a formal solution of this equation will then be 
straightforward, the polynomial Q being related to the ‘resonance equation’ as explained in 
subsection 2.3. 

For the needs of the proof of convergence of these series, we will establish that 

Note the extra factor t in the derivative terms, which will be important in section 3. 
For the more detailed study of the structure of the formal solution in section 4, we 

also mention that the number lo of logarithmic terms in G, is twice the multiplicity of 0 
as a root of r H Q ( x ,  r )  (or twice the multiplicity of 1 as a ‘resonance’, as defined in 
subsection 2.3). 

Before turning to the execution of this programme, let us close these preliminaries with 
a definition. 

Defylition. We say that U is an admissible balance if there is a non-zero ug which satisfies 
P(u0) = 0. Solutions corresponding to the same value of uo are said to belong to the same 
branch. 

Remarks. (1) The reshiction that no derivative terms occur at lowest order ensures that 
not only the equation for UO, but also the recursion relation for the higher-order coefficients, 
be algebraic rather than differential equations. 

(2) The definition means that it is reasonable to hope for a solution of the form 
U = U O ~ ”  + h.0.t. 

(3) In many cases, one determines U by requiring that the minimum in (IO) be attained 
for two values of A, the corresponding monomials in F balancing each other. 

(4) The case P(u0) 0 is somewhat degenerate, but occurs quite frequently, e.g., if 
U = 0 and ( t  = 0) is non-Characteristic (Cauchy problem). Another example is studied in 
subsection 5.3. 

G, = G,(x. I, . . ., t(lnt)‘O, { ~ j w ~ ~ ~ ,  ( t D j a : W ) j + I J l ~ m . ~ c m ) .  
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2.3. Resonances and reduction to a Fuchsian equafion 

Let us fix uo among the roots of P. We assume that we are not in the case of the Cauchy 
problem, so that u(u - 1 ) .  . .(U - m + 1) # 0. 

We prove that under fairly general circumstances, the substitution (12) leads to a 
Fuchsian equation for w. In fact, we will establish that 

if the h, and ka are chosen suitably. More precisely, we have the following theorem. 

Theorem 1. (a) After performing the substitution (12), equation (2)  is equivalent to an 
equation of the form 

Q(Z, ta,)w = p(x) + Ct(1n t )q  
,<lo 

xG, ( t ,  t l n r , .  . ., t( lnt)'O,x,  w ,  .. . , Dm-'w, {tDkaywJk+l,l<m,. k<") 

(13) 

where D = tat, for a suitable integer lo. 
(b) One has the following explicit formula for Q: 

Q ( x ,  r )  = C(U, Alfa0 
"#--P+IL=P 

(c) If Q ( x ,  D) = DSR(x ,  D) with R(x,  0) # 0, one can choose ko and the functions h, 

In particuIar, if Q(x;O) # 0, no logarithms are required on the r.h.s. 
(d) The~question of existence of a'formal solution of the form (3) then reduces to the 

in such a way that p = 0. One can in fact take lo = 2k, = 2s. 

solution of a recurrence relation of the form 

~ ~ Q(x,r)w,+i = FJwo, ... , w,l 

where the expressions F, can be computed recursively and may involve spatial derivatives 
of their arguments. 

Remark. As already mentioned, an equation such as (13) is called Fuchsian, because 
it reduces to an ODE with a regular singular point at the origin if no x-derivatives are 
present. This form will be convenient to prove the convergence of formal series solutions 
in section 3. It is for this purpose that we insist on the derivative terms in the r.h.s. to come 
only in the combination tD'aiw, instead of D'aiw. The presence of the logarithms is due 
to the fact that we also need the r.h.s. to vanish for t = 0. 'This will be achieved only by 
choosing suitably the coefficients h,. 
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induction on j ,  
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Step 1. First change of unknown. Let U = t ”u (x ,  t ) ,  and D = tat. We have, by 

a/u = tu - j  (D + U). . . (D + U - j + 1)u. 

Therefore 

U’ = n (t’--j(D + U). . . ( D  + U - j + i)a,u) I %I 

j.1 

Substituting into the equation and setting f = 0, one recovers the equation P(u0) = 0 for 
uo. 

Step 2. Introduction of logarithms and second change of unknown. Fixing uo among the 
roots of P, we now let 

where tq = t ( l n f ) q ,  and the h,, as well as the integer ko, will be determined below. We 
find 

(D +U). . . (D + U - j + i ) a i u  

= u(u - 1). . . (U - j + 1)aiuo 

+to(D + U + 1). . . (D + U - j +2) 8:w + ~ a ~ h , ( l n t ) 9  . 
[ 9  1 

Note that this expression can be thought of as a first-degree polynomial in (b, . . . , tb), with 
coefficients involving functions of x ,  and derivatives of w of the form tDk$w. 

Step 3. Substitution into (6). Let us now consider what happens upon substitution into each 
term of F. The result is a series in the t,, where the most singular term is tPP(u0). 

In a nutshell, we need to substitute and divide the equation by t P + ’ ,  The result will 
contain linear contributions in w, which generate the terms in Q(x.  D)w in theorem 1, terms 
in logarithms, containing only the h,, and higher-order terms. We need to factor an extra 
power o f t  in these terms. The terms involving space derivatives of w will immediately 
have such a factor, because they only con!xibute, by assumption, terms in t P + k ,  k 2. As 
for the others, the desired factor arises from products of t D j w  terms, or from products t&. 
They therefore end up having the form t x t(lnt)q+’f x Wx,  t ,  (Djw)). This yields the 
desired form of the equation. 

More precisely, we have, from step 2, 

U‘ = t”g(u)-P(Y)O,(x, t ,  [t4ah4], (tD’w]j+, [tD’a’w]) 

where a stands for all space derivatives. 
We now substitute this result into (6). which produces an expression of the form 

tPP(u0) + O(tQ+’(Int )a) .  We need to divide this by t P + ’ ,  since the sum of the terms 
in t P  vanishes by the choice of UO. 
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To clarify the form of the result of this operation, we consider each term f&" separately. 
Each such term contributes terms of degree wg(a) - p(u) +&(a), or higher. We also know 
that ug(a) - p ( a )  + p(a) 2 p, and this sum equals p or p + 1 only for terms which do not 
contain spatial derivatives. 

p + 2 still have a factor of t left after 
division by tpfl, and therefore already have the desired form. For the others, we will use 
the Taylor expansion of uy up to second order to extract the contributions in t P  and tP+ ' .  

The terms such that ug(a) - p ( a )  + p(a) 

We therefore only need to consider two types of terms. 
(1) Those monomials with wg(a) - p(a)  + p(a) = p;  they contribute 

By inspection, the.operator Q is as given in (14). (ol is some function of x .  

contribution 
(2)  Those monomials with vg(u) - p(u)  + p(a) = p + 1; in that case, we find a 

The function (p2 depends only on x .  
Combining these equations, we reach the desired assertion. 

Step 4. Choice ofko and (h9). We now finish the proof by showing that one can choose 
ko and (hq) to eliminate (o(x) under the assumption of case (b) in theorem 1. We have to 
solve 

where (o is independent o f t .  Therefore, we need 

It is easy to see that there is a solution if R(x ,  0) # 0 and k 2 s, which contains s arbitrary 
constants. 

0 

Remarks. (1) The equation Q ( x ,  r - 1) = 0 is called the resonance equation and its roots 
resonances. Nothing prevents resonances from varying with x .  However, usually, ug is 
constant, and so are the resonances. Note that the resonance equation is not Q ( x ,  r )  = 0 
because the initial value for w in (13) is in fact the second term in the expansion of U, 
uo being the first. If r is a resonance. the condition F,-I = 0 is called the compatibility 
condition (at level r) .  The resonance is said to be compatible if this compatibility condition 
holds identically. 

(2)  It follows from the proof that ko = ( lo/2)  equals the multiplicity of 1 as a resonance. 

The theorem is proved, with lo = 2ko = 2, as announced. 
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2.4. Is -1 a resonance? 

We give a necessary and sufficient condition for Q(r - 1) to be equal to zero for r = -1. 
We first choose uo such that P(u0) = 0. 

Theorem 2. 

S Kichenassamy and G K Srinivasan 

Assume that U # 0,1, . . . , m - 1. Then, a(-2) = 0 if and only if 

c(u, ~ ) f ~ ~ p ( ~ ) ~ f ~ '  = 0. (1.5) 
vE-P+$=P 

This holds in particular if p ( A )  is independent of A, i.e. if t does not enter explicitly in the 
balancing terms. 

ProoJ We compute Q(-2): 

(U - l)(u - 2) 
u0Q(-2) = x c ( ~ ,  A ) ~ A o u ~ ~ )  

= CC(U, 
= c(u, A)faoufA'[9(A) - p(A)/vI 

uS(A)-P(A)+p(A)=P 

= CC(K A ) ~ A o u ~ ( ~ ) [ P  -P(A)I/U 

= P ( u ~ ) / u  - ; C c ( v ,  A ) ~ A O P ( A ) ~ ~ '  
1 

from which the result follows. 

3. Convergence results 

We are interested in constructing convergent series solutions 

w = woo,. . . , , , tY~(t~it)"l  . . . (t[Intl'Y 
no....,", 

of (13) for an appropriate value of 1 .  
To this end, we note that if we view U) as a function of (x, g, . . . , r!), and let 

then w solves 

Q ( N ) w = C t q G q [ w , N w  ,...I. 
9 

Such an equation is called a generalized Fuchsian equation. 
Indeed, by the chain rule, one has, for any function w, that 

o[w( t ,  t h t ,  ..., t(lnt)'O)]= ( ~ w ) ( t , t I n t ,  ..., t(1nt)'o). 

It therefore suffices to seek solutions of (18): let us seek U in the form 
U = C u , t "  := uao ..._. ., c x ) C . . . t l " ' .  

Y 00. .... U, 

13 
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To prove the existence  and^ convergence of series solutions for the equations of 
theorem 1, we follow the general strategy of 1141 with minor improvements, see [141 
for omitted proofs. The result will be a solution of the desired form, with some lmge value 
of 1. The following section will show how to reduce the value of 1 .  

We begin by proving (subsection 3.1) that (18) can be replaced by a Fuchsian system 
of the form 

( N + A ) u = C t q G q .  
9 

We then show (subsection 3.2) that all such systems have holomorphic solutions provided 
that the eigenvalues of A have positive real parts, and then give a procedure (subsection 3.3) 
whereby one can increase the eigenvalues of A by going to another extended system. This 
requires that 1 be sufficiently large. Applying this method to the system derived from (1 I), 
we conclude the existence and convergence of a formal series solution to (13). 

Finally, we give two general cases when this reduction is possible. 
 the first is a general reduction theorem for semi-linear systems such as are found in the 

theory of solitons, for instance (subsection 3.4). It provides a second, very general, proof 
of the existence of formal solutions, but is not convenient to determine the optimal value 
of 1. 

The second (subsection 3.5) is the case in which we are given the existence of an 
approximate solution to a very high order; we show that this information ensures that an 
infinite formal series exists, and converges; thus, the existence of a formal series is shown 
to imply its convergence. This will be useful in one of the examples, where we will be able 
to construct a formal solution in a case when the procedures of section 2 or subsection 3.4 
do not apply directly. 

3.1. Reduction to a Fuchsian system 

In the present situation, we start from the Fuchsian equation (13) and introduce the new 
unknown 

( W , .  . . D m - ' W ,  ( t D k a i w } k + , J , < m )  

where m is the order of the equation. 

account. 
We proceed to compute the action of D on each of the new unknowns, taking (13) into 

Let w k  = Dkw and tDka:w = W k , J .  We have 

D W k  = Wk+I (1% 

for k + 1 < m. On the other hand, let a' = aj ,a j2  . . . = a ,  a i ' ,  with jl  6 j z ,  . . . 
I f k + l + l J I  <m.wewrite 

D W k J  = Wk,J f W k + l . J .  (20) 
I f k  + 1 + IJI = m, we write 

D w ~ , J  = W k , J  ftD'+'a;w = W k , J  + t a j , w k + l , J ' .  (21) 

We first note that any tDkaiw with k + IJI = m and k < m can be expressed as a 
For the last derivative, namely D ( P " ' w ) ,  we will use equation (13). 

first-order spatial derivative of one of our unknowns. We then write Q as 

Q(x, D) = D'" t QlD'"-' f.. 
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and find 
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Equations (19)-(22) now form a Fuchsian system where A may depend on x .  In practice, 
uo and the fa0 are constant, and so are the coefficients Qj.  

3.2. Convergence theorem 

The next point is that a generalized Fuchsian system 

in any number of space dimensions, and for any I ,  has exactly one solution analytic near 
t = 0, x = 0, provided that f is analytic, and all the eigenvalues of A have positive 
real parts (theorem 3 in 114, part 111, or [14, part I] if I = 0). This theorem contains the 
Cauchy-Kowalewska theorem as a special case, since we may convert 

U* = F(t, X ,  U, a+) 

tu, = r F ( t , x ,  U ,  &U) .  

to the Fuchsian form 

However, it does not follow from the Cauchy-Kowalewska theorem, which would predict 
not one but infinitely many solutions depending on the initial data. 

3.3. Increasing the eigenvalues of A 

Another general fact (see [14]) is that if we start from a Fuchsian system with arbitrary 
constant A, of the form 

one can, if I is large enough, produce another system of the same form, the solutions of 
which generate solutions of (23), but in which the eigenvalues of A have been raised by 
one. Iterating the procedure, we may reduce ourselves to the situation of step 1 in finitely 
many steps. We will write a for 8,. 

More precisely, one seeks U in the form 

U = uo(x) + t ’ u ( x ,  t )  = U0 +toll0 + .”+ t lUI .  (25) 

We must choose uo in the null-space of A.  Note that the new unknown U has ( I  + 1) times 
as many components as U. Substituting, we find that 

where U!+] is taken to be zero, and 
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We are therefore led to require that U solve the system 

W + A +  I ) u ~ + ( ~ + ~ ) u ~ + ~  = ~ j 4 j 4 ( o , ~ . ~ 0 , a u o ) + ~ t 4 g , j ( r , x , ~ , a ~ )  (26) 

(where Sjo is the Kronecker symbol.) Clearly, any solution of (26) generates a solution of 
(Za), via (25). 

We now need to absorb S j 4 f 4 ( 0 ,  x ,  UO, auo) into U. This is where the value of1 matters. 
In fact, we need to be able to solve the system for the initial value of U, that is 

4 

We may decompose U along two complementary subspaces, where A + 1 is invertible and 
nilpotent, respectively. The invertible part is solved immediately (UO = (A + I)-lq(n) and 
all the other uj = 0). We therefore assume (A + 1) is nilpotent. We may then take uo = 0 
and solve for the other uj recursively. Since j4 vanishes for q z b, we have 

for j z k,, + 1, and the last equation reduces to 

( A  + I ) r - x O - ' ~ ~  = 0 

which holds for 1 large enough if A is nilpotent. Thus, if I has been chosen large enough 
at the outset, one may raise all the eigenvalues of A by 1 by considering (26) instead of 
(24). Since A has at most finitely many non-negative integer eigenvalues, we may reduce 
ourselves to the situation of step 1 in finitely many steps. 

3.4. Semi-linear systems 

We now show that rather general semi-hear systems can be cast in the form (X) ,  as soon 
as the first term of a WTC-like expansion has been found. This proves at the same time the 
existence and the convergence of WTC expansions for such systems. 

A~crude estimate on the number 1 of logarithmic variables can be determined by 
following step 2. We include the details for the convenience of the reader, since they 
are not very lengthy. 

The system has the form 

where aj = d ( n ,  t )  = ~ k ~ o a ~ ( n ) t X ,  and t is again onedimensional. All considerations 
are local near n = 0, t = 0. 

We are interested in solutions which blow up on Ti: defined by t = @(x) ;  we seek 
U - (t - @(x)) -p /4uO(x)  for integers p and q as below. 

Four technical assumptions are now described. The role of our four assumptions is as 
follows: 

( 1 )  ensure that the blow-up surface is non-characteristic; 
(2) require power growth for the nonlinearity; 
(3) express that it is possible to compute the leading term so as to balance the derivatives 
with the nonlinearity; 
(4) ensure that the resonances are constant. 
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E is required to be non-characteristic (as is usual in the WTC procedure): 

Q(x)  = 1 + c u i a j @  is invertible. 
( j . 1  

We require that b(u) have power growth at infinity: there are integers p and q ,  with 
= 0. We q > 0, such that rp+qb(r-p$) is analytic in r E CC and C E C", near 7 = 0, 

write 

Substitution of the leading behaviour leads to 

-PO = q Q ( X ) - l C o ( u o )  (30) 
which we assume has a non-trivial solution. 

Finally, we require that there exist a matrix-valued function P ( x )  such that 

P-'Q-'cb(uo)P is constant. (31) 

Let us show that the assumptions (28x31) ensure that one can indeed reduce the system 

It is convenient to introduce the new time variable T = t - @(x) ,  and to write the 

(Here, cb is the matrix of derivatives of CO with respect to the components of U,) 

to a generalized Fuchsian system of the type considered in step 2. 

equation as 

where a(au) = cj d a j u  and ao(au) = cj &Ij.. Note that (ao - a )  = O(T) .  We wrote 
au for all the first-order spatial derivatives of U. Next, since we are in a 'weak PainlevB' 
situation, we let T = 7 4  and U = uz-p;  using the assumption on b(u), we find 

QUT = a(au) + b(u) + (ao - a)(al/r)ur 

Q ( ~ u z  - P u ) / q  7 9 a ( a ~ )  + 45,  U) + (a0 - a)(a@)(ruz - p u ) / q .  

Since, by (28), Q-' exist.?., we have (Q - (a0 -a)(a@))-l  = Q-' + O(T)  = Q-' + T ~ R ,  
and we find 

 TU^ - p u  = q(Q-' + T ~ R ) [ T ~ u ( ~ u )  + ~(t, U)]. (32) 
We now substitute 

U = U0 +? ' W := U0 f toWO f . , . + q W i  

where zj = s(lnr)j; thus, 70 = 5 .  We use ? to denote (TO,. . . , y). We find, using (29), 
that 

-, 
c(7 ,  U) = C(70. uo + ? . W )  = co(uo) + cb(uo)[i . W I  + 7OCl(uO) + 
It will be convenient to write ? . [c~(uo)w] for ~ ( V O ) [ ? .  ID], which amounts to defining 

pi . hx(?, X ,  W ,  aw). 
k 

Cb(U0)W = (Cb(UO)WO,. . . ,4 (UO)Wl) .  

The calculation of ra,u = N ( i  . tu), where N = Ek(rk + k ~ ~ - ~ ) a / a z ~ ,  is identical 
to that of step 2, namely 
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We also note that since q > 1, there exist pj and hi such that 

We are ready to write (32), which now becomes 
(N - p) (?  ' w )  --puo 

Letting (0 = (01 + (p2 and g = hl + hl  + h, it is now-natural to consider the system 

( N  - P - qQ-'cb(uo))wj Wj ( j  f l)Wj+l @jo rkgkj  
k 

where gkj is the j t h  component of gk. Letting wj  = P z j ,  we obtain a system of Fuchsia 
form. I t  remains to eliminate p by ineoducing more variables as necessary, by a procedure 
analogous to the one in subsection 3.3. 

3.5. Alternative argument 

While this argument is quite sufficient for the expansions considered so far, we mention a 
second procedure, which will be useful later. 

The point is that the reduction of subsection 3.4 requires only in practice the existence of 
a formal series solution, even if it was obtained by a procedure other than that of section 2. It 
sometimes succeeds even if the leading terms do not contain uo alone, as in the 'degenerate 
Cauchy-Kowdewska situation' of section 5.  

Let us say that U = xjGR ug is a solution of 

for some functions the dependence of the nonlinexities on the derivatives of U will 
be suppressed in this paragraph. Note that one may further decompose the remainder as 
follows: 

We prove the following theorem. 
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Theorem 3. 
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If (33) has a solution up to order g, there is a system of the form 

(0" A')w), = ~ t q g g . O [ w l  
4 

which generates solutions of (33) via the substitution 

U = U +  c taw. 
Ial=t 

and for which the eigenvalues of A' have the form A + g, where A runs through the 
eigenvalues of A.  

Proox It suffices to compute the result of the substitution: on the one hand, we have, on the 
space of homogeneous polynomials of degree g, N = g + M (see section 6). Furthermore, 
M is nilpotent. Let us write 

Mt" = M,btb. 
Ibl=g 

We then have 

Therefore 

( N  + A) t"w, = t" ( ( N  + A')w), 
U (I 

where the,eigenvalues of A' are as indicated in the theorem. 
As for the nonlinear terms, there are functions hq,a such that 

f q  (x, r, u + ?taw, = fq[ui + ~ t a h ~ . ~ ( x ,  w ,  aw). ) U 

Since U is a formal solution up to order g, equation (34) holds, and we find that 

(N+A' )w ,  = C t q [ h q . . ( x , w , a w ) + k y l  
4 

implies that U solves the desired equation. 

4. Structure of the formal series 

In this section, we consider again a single equation of the form 

Q(tar)u = c t ( h ~ t ) ~ G ~ [ t , t I n t , .  . ., t(lnr)'O, U, Du, tDa,u,.  . .I. (35) 
944 

Recall that D = tar. 
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4.1. Generalities 

We saw in the previous section that there is an integer 1 such that solutions in powers of 
t(lnt)j, j Q 1, exist. This means that there is a series (5) with that value of I ,  and which 
solves the original equation (8). 

We give here a much more precise estimate of the optimal (i.e. smallest) value of 1 
which enters in (5). This estimate will be called 1'. 

As mentioned in the inwooduction, it seems that the structure of  logarithmic WTC 
series can be thought of as giving a measure of how 'non-intepble' the equation under 
consideration is. 

4.2. Inessentialfiulctions 

Note first that since the variables ( t o , .  . . , t1) play only an intermediate role,~it is~helpful to 
distinguish those functions which become zero upon replacing t j  by t(1nt)j: 

oeflnition. we say that a polynomial (or a power series) p(tj is inessential if 

~ ( t , t I n t  ,_.., t ( l n t ) ' ) - ~ .  

It is proved in the appendix that the space of inessential functions is invariant under N. 

A basic observation is that we may replace (18) by 
Of course, inessential functions may involve space variables as parameters. 

= x t 9 ( G 9 ~ +  4)  (36) 

where I9 is any inessential polynomial. We will see that an appropriate choice of I9 will 
enable us to considerably lower the value of 1. 

4 

4.3. Role of semi-invariants 

For each resonance, the corresponding term in the formal solution contains arbitrary 
functions of t o , .  , . , t l .  These functions must satisfy, in the notation of section 6, 

M'u=O 

where r is the muItiplicity of the resonance. 
Now, the homogeneous polynomials which satisfy M u  = 0 are known as semi-invariants 

or sources of covariants in.the invariant theory of binary forms, see the appendix for details. 
Except for pure powers of to, they are all inessential (see the appendix). They have been 
classified [ll]. In particular, there are such polynomials which involve any given tl if the 
degree is chosen large enough. Thus, there are usually different formal solutions for every 
choice of 1. However, theorem 4 below proves that 'they merely differ by inessential terms 
if 1 is large enough. 

4.4. Results and proofs 

We now state the results. 
Let us assume that the coefficients of Q, as computed in section 2, are constant, to 

simplify matters. (This will be the case for all our examples.) In keeping with section 2, 
we will say that r is a resonance if and only if Q(? - 1) = 0, and its multiplicity is by 
definition the multiplicity of r - 1 as a root of Q. 
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Theorem 4. Let I' be the the sum of (i) twice the multiplicity of 1 as a resonance, or 10 if 
it is greater, and (ii) the maximum multiplicity of any other positive resonance. Then there 
are inessential polynomials IO,. . . , I ,  such that all formal formal solutions of (18) have the 
form U = u(t, . . . , r (In r)!'), where u(t0, . . . , tp) solves 
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The number of arbitrary functions in the resulting solution equals the sum of the 
multiplicities of the positive integer resonances. 

Specializing to the case of simple resonances, we obtain the following corollary. 

Corollary 5. If all resonances are simple and greater than 1, one may take 1 = 1' = 1. 
More precisely, there is a formal solution of (18) of the form U = u(t, tlnt), with as many 
arbitrary functions as there are positive resonances. 

Proofs. To say that U is a solution means that 

is inessential, and therefore can be written E, f,,J9(t). 
We therefore consider the most general series solution of this equation and show that 

its essential part is independent of .I9. We then compute the formal solution to some high 
order, and introduce the Is. The existence and convergence of the series solution then 
follows from subsection 3.5. 

Let us substitute 

where ug is a homogeneous polynomial in (to, . . . , t l ) ,  of degree g, into equation (18). Note 
that we consider, as in subsection 3.5, the homogeneous parts of the series solution, rather 
than its coefficients, for convenience. 

We first prove, by induction on g, that ug is the sum of an essential and an inessential 
part, the former depending on ( to ,  . . . , tp), where 1' is defined as in theorem 3. We then 
show that one may introduce inessential polynomials f4 into the equation, in such a way 
that the resulting equation will have a solution where the inessential part is identically zero. 

Step 1. The ug must be determined recursively from equations of the form 

where [ )8  indicates that one takes the homogeneous part of degree g only. 
Now, on polynomials of degree g, N = g + M ,  with M = Crktk-la/atk.  Therefore, 

writing Q ( N )  = M k R ( N )  with R ( g )  # 0, the recursion relation reduces to the solution of 
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where k is the multiplicity of g as a resonance. The properties of M which we will need 
are proved in the appendix. 

We deal in this step with the case k = 0. In that case, we merely need to check that the 
r.h.s. has the desired form, since ug will then be uniquely determined. Indeed, N is then 
invertible on the space of polynomials in (to, . . . , tp). 

we may use the induction hypothesis and 
write Ej<g uj = u(t0, . . . , t i , )  + w, where w is inessential. It follows that 

Since (G,I8-l involves only UO, ..., 

G, = G,(to,. . . , tiO,-u + W ,  . . .) 
= Gq (to, . . . , tio, U, . . .) 

+ [ F , ( ~ , u + s w ,  NU ,... ) w + F D ~ ( ~ , U ,  N U t - s N w  ,... ) N w + . . . ]  ds. Jd' 
Now, w ,  Nw, .  . . , and all their derivatives, are all inessential. Since inessential functions 
%e stable by product with other functions (i.e. they form an ideal), we see that (Gq + Jq&.-, 
is the sum of a polynomial in ( t o , .  . . , tp), and an inessential polynomial. 

Step 2. We now assume k > 0. The earlier results about the form o f  G ,  still hold. 

form' 
Using theorem 8 of the appendix, we may now assert that the general solution has the 

ub = G(b, .  . . , + inessential. 

Therefore, we need to have I' 2 k + lo. We also see that the essential part of ug involves 
k arbitrary functions of x ,  because case (1) of that theorem ensures that ug is determined, 
modulo inessentials, up to a combination of t i , .  . . , t:-k+ltf-l.' Since the solutions of 
M'u = tq Jq for different J,'s differ by inessential polynomials, we see that the bsential 
part of U does not depend on J,. 

In practice, we thus see that we have to solve at each resonance an equation of the form 
Mku = known, and one can make use of the special forh of the r.h.s. to further reduce the 
value of 1, as we do in section 5. 

Step 3. Introduction $4.  We now fix g very large, and let ug be essential p m  of the 
formal solution we just computed, truncated at order g. 

Define Iq (of degree g) so that ug is a formal solution up to order g of 

Q ( N u s  = ~ ( G , ~ I U ~ I  + I q ) .  
~ ~ 

9 

We may now apply theorem 3 to conclude. Note that us contains arbitrary functions of x 
corresponding to each resonance. 

This compIetes the proof of theorem 4. 0 

Step 4. Proof of corollary 5. If all resonances are simple and greater than 1 (or if 1 
is a simple and compatible resonance), an important simplification is that 10 = = 0: 
no lo,guithms appear in the first step of the reduction. If we assume that g is a simple 
resonance, and that for j~ c g, ug = us(fo, ti), we see that to find ug, we must solve an 
equation of the form 

M R ( N ) U ,  = toF,(tO, t i )  
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where Fg is a polynomial of degree g - 1, and R ( N )  is invertible on the space of such 
polynomials. By case 3 of theorem I, we may find a solution which depends only on to 
and t l .  The argument is now finished as in the general case. 

0 

Remarks. (1) If there is a single simple resonance r > 1, the solution is in fact given 
by a series in to and tA-'tl (i.e. t and t'lnt). Indeed, since 1 is not a resonance, we have 
ko = 10 = 0, and we find that the formal solution U = cj uj is computed by solving 
recursively an equation of the form 
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Corollary 5 is therefore proved. 

Q(N)uj = toRj(to, ti). 

Rj and uj are independent of tl if j < r .  
Now N (and therefore Q(N)) leaves invariant the space of polynomials in to and ti-'tl; 

Q ( N )  is invertible on this space. 
On the other hand, the r.h.s. Rj must involve t1 linearly if j < 2r. Assume by induction 

that the ux for k < j contain only monomials of the form tgbtf, where c < [k/r]. Then Rj 
is a combination of polynomials 

U .  . . . U .  I1 k 

such that j l + .  . . + j ,  +, 1 = j .  Each of the uj3 contains only monomials of the form t$tf. 
with c, < [ j , / r ] .  It follows that toRj, and therefore uj, contains only monomials $tf with 

QED 
This property may fail if 1 is a resonance. 
(2) We have already seen that lo can be taken to be twice the multiplicity of 1 as a 

resonance. 

5. Examples 

This section contains three types of illustrations of our general results. 
Subsection 5.1 deals with a class of fifth-order equations containing six parameters, 

which leaves room for a variety of possible formal series solutions. Three equations of 
this type are known to be integrable, and two other sub-families have been studied by WTC 
analysis in the literature (case 6 of subsection 5.1 in [PI, and case (VIII) of subsection 5.2 
in [12]). We construct singular solutions with a prescribed singularity surface, and a variable 
number of logarithmic terms, for general parameter values. 

Subsection 5.2 deals with special parameter values leading to a modification of these 
results. In particular, one of the caes  when the equation degenerates into a third-order 
equation passes the w c  test in its original form, and does not seem to have appeared in 
the literature. 

Subsection 5.3 is devoted to regular solutions of some equations of this class, in case 
the unknown multiplies the top-order derivative. These solutions, although sometimes 
analytic, cannot be obtained from the Cauchy-Kowalewska theorem, but can be found 
via the procedure of subsection 3.5. 
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5.1. Fifth-order equations-general case 

We apply the preceding to the class of fifth-order equations in one space dimension 
considered in 1151, where a several applications and references were given. 

The equation. It reads 
2 ut + ax@uXIx*. + buuzx + yux + pu, + qu2 + ru3) = 0. ~ . 

We first replace x by x-$ ( t ) ,  and seek solutions singular along ( x  = 0). It is convenient 
here to call the new expansion variable x instead of t ,  since ( t  = 01 is characteristic. while 
(x = OJ is not. 

After this change of variables, the equation reads 

We seek U in the form 

U = X-2(uo +nu1 + . . .) 
adding logarithmic terms as necessary. 

Results. We discuss the form of the singular expansion for all the cases where one branch 
has four non-negative integer resonances. Apart from the fifth-order KdV, the Sawada- 
Kotera, and the KaupKuperschmidt equations, we find, in the ‘general case’ when no two 
of the quantities a, r and 38 +2y vanish, 24 other cases including one which also has three 
positive resonances in its other branch. The results are summarized in table 1. Note that 
cases 3, 10 and 16-20 possess families of sech2 traveling waves, for appropriate values of 
q and p, by the results of [151. 

We then discuss the degenerate cases when this condition does not hold, which leads to 
eight other cases, including third-order equations. The third of these cases passes the WTC 
test in the sense that it has a singular expansion depending on three arbitxary functions. We 
also discuss for these thiid-order equations the existence of solutions of the form 

x(u0 +xu1 + . . .). 
They are not given by the Cauchy-Kowalewska theorem if p = 0, since U then multiplies 
the top-order derivative. They can nevertheless be brought into Fuchsian form. 

We now turn to a systematic wc analysis of equation (37). 

Leading term and resonance equation. ~ We consider first the case when no two of the 
quantities a, r and 38 + 2y vanish. In that case, U - u ~ x - ~  is the only possible singular 
leading behaviour. The other cases are considered in the next subsection. Substitution of 
the pure power series into the equation leads t@ the following theorem. 

Theorem 6. The leading term ug satisfies 

u0(120cr + 2(3,6 + 2y)uo + r u t )  = 0. (38) 

The resonance equation is then 

Q(r - 1) :=,(r + l)(r - 6)(r3 - 15r2 t (86 t ,6uo/cy)r - (240 + (68 + 4y)uo/a)) = 0. 

(39) 
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In particular, 1 is a resonance only if 
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1 1 7 6 ~  = 85p2+ l 08py  + 32y2. 

Otherwise, u1 = 0. 

These statements are verified by routine (albeit lengthy) calculation. -1 and 6 are 
resonances in all cases. 

From the form of the resonance equation. it is easy to see that there are 27 cases for 
which there are four non-negative integer resonances. They are in correspondence with the 
solutions of rl + rz + r3 = 15. For each set of resonances, using the equation for UO, one 
determines uniquely the values of puo/cu. yuofor, and r u i / a .  

To study the second branch, it is convenient to note that one can assume uo = 1 by 
scaling U. We assume that this has been done. The other possible value of uo is then 
120/r (except in case 26 where r =~O, and there is only one branch). One then computes 
the resonances for the branch associated with this second root. The results are given in 
table 1, and are discussed below in more detail. Some of the more complicated entries were 
computed using ‘Mathematica’. We recover the three known integrable cases, and find one 
more equation with the maximal number of positive integer resonances. 

Note that q and p do not enter at this stage. 

Logarithmic terms. We are now interested in determining E‘ such that the singular solutions 
have the form 

U = u ( x , x l n x , .  . . , x ( ~ n x ) ” , t )  

or rather, as in section 4, 

U = u ( t g . .  . . , t ,) = U&, . . . , tp) +inessential 

with tj = x ( l n x ) j .  
We however give slightly sharpened 

statements which take into account the particular features of the equation at hand. The 
results are summarized in the table, and are commented below. 

The general statements in section 3 apply. 

The main particular features of (37), which simplify the analysis, are 

(1) If 1 is a resonance, it is always compatible. 
(2) If 1 is not a resonance, then u1 = 0 and 3 is compatible if it is a resonance. If 

(3) If neither 1, 3, nor 5 is a resonance, we have U I  = u3 = us = 0. 
(4) If 6 is the first resonance, it is always compatible if U, is constant: indeed, the 

compatibility condition expresses the vanishing of the the coefficient of x-‘ in the expression 
obtained after substitution of the series for U into the equation. But no term can arise by 
differentiation of a pure power series. Therefore, this term must come from the expansion 
of ur.  

(a) Since 1 is always compatible, a simple resonance at 1 does not introduce logarithms 
(in other words, ko = EO = 0). Therefore E = 1 is enough for all cases when all positive 
resonances are simple, which refers to cases 1 4 ,  8, 10-13, 17-19,22 and 23. 

However, we may even take E = 0 if resonances are compatible. This happens in the 
following cases. 

neither 1 nor 3 is a resonance, then u1 = 113 = 0, and 5 is compatible if it is a resonance. 
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Table 1. Fifth-order equations. List of cases with fokon-negative integer resonances in one 
branch. It is assumed that ug = 1 for the first branch. Cases 17, 19 and 23 are integrable by 
IST for special values of q and p. 

Non-negative resonances Coefficients 

Case First branch Second branch %/a Y b  Flu 11 

1 
2 
3 
4 
5 
6 
7 
8 

9 
IO 
I I  
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 

25 
26 

27 

0, 0, 6, 15 
0, 1. 6, 14 
0, 2. 6. 13 
0. 3. 6. 12 
0. 4, 6, 11 
0, 5, 6, 10 
0, 6, 6, 9 
0, 7, 6, 8 

1, 1, 6, 13 
I ,  2, 6, 12 
1, 3, 6, 11 
I ,  4, 6, IO 
I ,  5, 6, 9 
1, 6, 6, 8 
I ,  6,7,7 

2, 2, 6, 11 
2, 3, 6, 10 
2, 4, 6. 9 
2, 5. 6. 8 
2. 6. 6. 7 

3. 3, 6. 9 
3. 4. 6. 8 
3. 5, 6, 7 
3, a, 6, 6 

4, 4, 6, 7 
4, 5,  6, 6 

5,5,5,6 

As first branch -86 
As first branch -72 
AS first, branch -60. 
As first branch -50 
As first branch -42 
As first branch -36 
As first branch -32 
As first branch -30 

2.07772.. .. 6, 13.4442.. . -59 
3, 6, 6 + -48 
6, 12, (87 + -)I58 -39 
5, 6, 5 + &  -32 
6, IO, (25 + m ) / l O  -27 
6.8, (7 + J@)/2 -24 
6 -23 

3.94488 .__ .  6, 12 .4677... - 3 8 ~  
5. 6. 12 -30 
6. 6.26589 __.. 11.2807 ... -24 
6, 8. 10 -20 
6 -18 

6, 12, (39 + 3 m ) / 2 6  -23 
6, 8, 12 -18 
6, IO, 12 -15 
6, 12. (3/2)(1 + f l) ~ -14 

6,954085 ..., 16.2771 ... -14 
NIA - I2 

6, IO -11 

69 
48 
30 
15 
3 

-6 
-12 
-15 

127/4 
18 
27t4 
-2 

-3314 
-12 
-5314 

8 .  
0 

-6 
-10 
-12 

-2114 
-9 

-4514 
-12 

-11 
-12 

-4914 

120 1 
120 ’ 1 
120 1 
120 1 
120 I 
120 1 
120 I 
120 1 

107 3 
96 1 
87 1 
80 1 
75 1 
12 ~ 1 
71 2 

76 2 
60 1 
48 1 
40 1 
36 2 

39 2 
24 1 
15 1 
12 I 

8 2  
0 2  

-5 1 

* Case 17. Compatibility at level 2 imposes the relation q + 6p = 0 between q and p. 
q = p = 0 corresponds to the Sawada-Kotera equation. 
Case 19. One finds q + 6p = 0 for 2 to be compatible; no further constraint is found 
at level 8. This is the family of Efth-order KdV equations. 
Case 23. Examination of the compatibility conditions~leads to q+3p = 0. If q = p = 0, 
we recover the KaupKuperschmidt equation. 

Note that case 22 is the only other case in which the second branch has three positive 
integer resonances. It nevertheless requires logarithms at level 4, because the compatibility 
condition sets a condition on +. 

(b) Assume that 1 is at most a simple resonance. If all resonances other than 1 are not 
all simple, but are at most double, we may take 1’ = 2. This corresponds to cases 7, 14-16, 
20, 21, 25, 26. However, one can sometimes give a better result. 

Case 7. The first resonance at 6 is compatible, and therefore requires only I’ = 1. Since 
the other resonance is simple, 1’ = 1 is enough. The same argument applies to case 21 
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(and also to case 16 if the compatibility condition at level 2 holds). 
Case 14. Since both 1 and 6 are compatible, only one logarithm is required for the 
double resonance 6, and we may take I' = 1. 

(c) If 1 is a double resonance (case 9), we find lo = 2 by inspection, so that, since the 
other resonances are simple, we take 1' = 3. 

(d) The last two cases, 24 and 27, have one triple resonance, at 6 and 5, respectively. 
Since both are compatible, we may take I' = 1, instead of 3 which would have been 
predicted by the general rule. Let us show this for case 27, the other one being simjlar. 

At level 5, we need to solve, for the homogeneous part of degree 5 in the solution, an 
equation of the form 

M 3 v  = cf:. 

But since the resonance is compatible, we actually have c = 0. The solution is therefore 
cor: + clf$f l  + c2f$rz modulo inessentials. The coefficients CO, c1 and c2 are arbitrary 
functions off .  But this can also be written cot: + q f $ f l +  c z f ~ ' t ~  modulo inessentials, since 
rot2 - t: is inessential. The result follows. 

5.2. Fifth-order equaiiom-degenerafe cases 

We must now consider the case when two or more among a, r or 38 + 2 y  may vanish. 
The discussion breaks down into the following cases: 

a = r = O :  3 8 + 2 y # O :  8#0 (1) 
@ = O  @) 

3 8 + 2 y = O :  b#O (III) 
p = 0  (IV) 

a=O, r # O :  3 8 + 2 y = O :  ,9#0 (v) 

p = 0  (VI) 

p = 0  0". 
a#O, r = O :  3 8 ~ + 2 y  = 0 :  j 3#0  (VII) 

In all cases, v = 0, 1,2 is possible, and corresponds to the solutions of the Cauchy problem 
(if a # 0, one may take U = 0, . . . ,4). However, in the third-order case, one may not 
allow p + pu to vanish for x = 0, s i n e  the equation has the form ( p  +pu)uur = second- 
order terms. In this degenerare Cauchy-Kawalewsko situation, there may exist solutions 
for which v = 1. A new resonance equation can then be computed. We investigate this 
case separately; but first, we give below a summary of the situation for singular solutions 
in cases (Q-(VIII). 

(W) and (VI) correspond to the third-order KdV and modified KdV equations, which are 
known to have the Painlev6 property. 

In case (I), leading-order-analysis leads to U = ,¶/(p+y). One must compute separately 
the relevant compatibility condition in the exceptional cases where this ratio is an integer. 

In cases (II), (V) and (vrr), there is no consistent leading singular behaviour of the form 
U - x"(u0 +. . .). This does not rule out the possibility of other, more complicated, leading 
behaviours. 

In case (EI), one finds v = -2, with resonances -1,O, and 6. There is a solution of 
the form x-' ck ukxk with uo and ug arbitrary. This equation therefore passes the WTC test 
in its original form for this particular singular branch. 
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In case (VIII), the only possible singular behaviour is U - uoxw4, with resonances at -1, 
8 and 12. One must take I = 1 since the resonances are not compatible. The compatibility 
conditions have been wlitten out by Jeffrey and Xu [SI. 

There are more precise results for ODE reductions (in particular if U = u(x));  the second- 
order case is of course classical; a few partial results can be found in Bureau 141 and, for 
related equations, in Chazy [5 ] .  

5.3. Degenerate Cauchy problems 

In case o( = 0, but B # 0, so that the equation degenerates into a third-order equation, 
we have to deal with yet one mre  branch of solutions, namely those which vanish for 
x = *( t ) .  They are, however, not always given by the Cauchy-Kowalewska theorem. 

We develop the calculations in this case in some detail, since this is another case where 
the leading-order balance equation does not determine the first term. As we will see, we 
may nevertheless re-cast the equation in Fuchsian form. 

Let us first note that by adding a constant to U, and replacing t by t - cx for a suitable 
c, one may, as we will, assume that ,U = 0. The equation takes the form 

puuxxx + ( p  + 2y)u,u, + ut + {qu2 + ru3Ix - *'uz = 0. 

U = x ( u o + x u 1  + X 2 U 2 + " . ) .  (41) 

(40) 
We may find solutions of the form uo + xu1 + . . . if uo # 0. We will however he 

interested in solutions of the form 

Substitution generates at lowest order the equation 

uo(2@ + 2y)u1 - $') = 0 
and, from the coefficient of x j ,  j 2 1,  a recurrence relation of the form 

( j  + l ) ( j  + 2)(p j  + j3 + 2y)uouj+1 = Fj[uo. .  . . , u j l .  

Thus, we find that there is a formal solution for which uo is arbitrary, provided that 
(B + 2y)/p' is not a positive integer. In case 38 + 2 y  = 0, however, there is a resonance 
at level 2 which leaves the coefficient u2 arbitrary, provided the compatibility condition 

U&'+ [ 1 2 q u ; + 3 u ~ l * ' = O  
holds. 

convert the equation to Fuchsian form nevertheless. 
The solution is therefore very different from the case of the Cauchy problem. Let 11s 

Let us write 

U = xuo(t) + X 2 V  (42) 

U-1 = (xuo)-l(l - x u  /U0 + (xvluo)2 + , . .) 
and divide through the equation by U. Using 

we find, after multiplication by x ,  an equation for U of the form 
Q(x&)u - @' = x F ( x ,  V , X V , , X ~ V ~ , ,  ut) 

with 

Q ( j )  = (i + l)(i + 2 W i  + B + 2 ~ ) .  
We therefore find that, after subtraction of the first term of the formal series (i.e. after using 
substitution (42)), the result is again a Fuchsian equation to which the considerations of 
section 3 now apply without difficulty. 
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Appendix. The operator M 

We prove here the properties of the operator 

S Kichenassamy and G K Srinivasan 

that were used in the text. We often drop the subscript 1 for convenience. We also explain 
the role of M in the invariant theory of binary forms. 

We write = a p t k ,  and define the operators G = E, &ak, P = Zk ktk& and 

with the convention that t-1 = tl+l = 0. Note that for any monomial tu 

Gt" = g(u)t" and Pt" = p(a)t".  

We call g(a)  and p ( a )  respectively the degree and the weight of the monomial tu. 

Theorem 7. G commutes with P, M, and M'. In addition, { W = IG - ZP, M, M') satisfy 
[W, MI = -2M,  [W, M'] = 2M', and [M, M'] = W .  

Remark. 
the Lie algebra d ( 2 ) .  

ProoJ It suffices to check these statements on monomials. 
First, we note that for any monomial U of degree g and weight p .  the polynomials M u  

and M'u are homogeneous of the same degree, but their respective weights are p - 1 and 
p i - I .  

This means that the relations [G, MI = [G,  M'] = 0, [P, MI = -M and [P, M'] = M' 
hold on all monomials, and therefore hold quite generally. Also, we have by direct 
calculation [M, M'] = (IG - 2P). The other commutation relations follow easily from 
these. 0 

Theorem 8. Let U be a sum of monomials of the same degree g and weight p ,  in the 
variables (to, . . . , t l ) .  

(1) If M k u  = U and U is inessential, homogeneous of degree g, then v is the sum of a 
linear combination of of ti,. . . , and an inessential polynomial. Conversely, if 
U is inessential, so is Mu. This applies in particular to the homogeneous elements in the 
kernel of M. 

(2) If U is a monomial with lg  - 2 p  > 0, then U is in the range of Ml. In particular, 
any monomial in (to, . . . , tk )  is in the range of Mr if 1 > ZG. 

(3) Assume U = Cq5yo rqu;(to,. . . , tp), and ko < I' 6 1. Then the equation Mku = U 
can be solved, modulo inessential polynomials, by a polynomial which depends only on 
(to, . . . , tl,), provided that k + ko 6 1'. 

ProoJ 
s ( t )  = v( t ,  t ln t ,  . . .). We have, since N - g = M on polynomials of degree g, 

If we let (H, X, Y) = (-W, -M', -M), we obtain the standard presentation of 

(1) The statement is clear if g = 0. Let us therefore assume g > 0. Let 

ds 
dt 

t - - g s = ( M u ) ( t , t l n t  ,... ) = u ( t , t l n t  ,... ) = O .  
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Since s(0) = 0, s ctg, so U - ct,$ is inessential. This settles the case k = 1. The other 
cases, as well as the proof of the statement in the opposite direction, are proved similarly. 

(2) The statement follows from a general property of representations of 51(2): the 
irreducible representations contained in the present one act on a chain 

(OX. 1%-2, t.. , U - k )  

of polynomials of degree g, where, for every j .  uj is an eigenvector of 1G - 2P.  M maps 
every vk to a non-zero multiple of Q+Z, resp: 0 if k = p .  and therefore, any vj with j z 0 
must lie in the range of M. But these polynomials span precisely the sum of the eigenspaces 
of 1G - 2P with positive eigenvalues, as desired. 

There is a direct proof of this fact in [ll]. 
In particular, if U = u(b,. . . , f k ) ,  we have at any rate p < kg, and 1 > 2k is certainly 

sufficient. 
(3) It suffices to consider monomials. Let u ( 3  = 3 = tFt? . . ., and u(t ,  r Int, . . .) = 

tg(1nt)P"). We also know that g = a0 + . . . +afr ,  and that there is an index q 4 ko such 
that a, 0. As usual, p(a )  = al + 2az + . . . . We want, if u(t,  t In t ,  . . .) = r ( t ) ,  

so that r = Ch4cht8(lnr)h + tgR(lni), where R is a polynomial of degree p(a )  + k, and 
the ch are arbitrary. Now, one can always write any expression tg(lnt)P(Q)+k in the form 

j i s  

using the fact that a, > 0. If k +ko < 1'. we therefore see that we may replace t ,  t lnt,. . .by 
to, t l , .  . .in the above expressions, to obtain a polynomial U' in (to, . . . , tl,) such that Mkv'-u 
is inessential. This is the desired result. 0 

Relation io invariant theory. A binary form is an expression of the form 

The group SL(2) acts on the coefficients of p in the following way: if x = ax' + by', 
y = cx' + dy', where 

there is another binary form, p', in x' and y' such that p(x ,  y )  = p'(x'. y'). Its coefficients 
(t;. . . . , $) define the action of the transformation on (ro, . . . , tf). 

An invariant is a function of the coefficients (to, . . . , tl)  which remains unchanged in 
this transformation; a covariant has the same property, but is allowed to have homogeneous 
dependence on x and y .  

The usefulness.of this notion is that the coefficients of the top power of x in covariants 
coincide with the solutions of Mu = 0. These coefficients are called semi-invariants. 
M u  = 0 and M'u = 0 in fact express respectively, at the infinitesimal level, the invariance 
of U under the subgroups 
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